Hyun-A Chung, ${ }^{1}$ Jeum-Jong Kim, ${ }^{1}$ Ho-Kyun Kim, ${ }^{1}$ Deok-Heon Kweon, ${ }^{1}$ Su-Dong Cho, ${ }^{2}$ Sang-Gyeong Lee, ${ }^{1 *}$ and Yong-Jin Yoon ${ }^{1 *}$

${ }^{1}$ Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Chinju 660-701, Korea
${ }^{2}$ Research Institute of Basic Science Changwon National University, Changwon 641-773, Korea
Received December 21, 2004

Abstract

This paper presents the synthesis of some alkyl or aryl pyridazinyl ethers from 2-alkyl-4-halo-5-hydroxyand 2-alkyl-4,5-dichloropyridazin-3(2H)-ones or 3,6-dichloropyridazine. Reaction of 2-alkyl-4-halo-5-hydroxypyridazin- $3(2 H)$-ones 1 with 1,2-dibromoethane or 1,3-dibromopropane gave the corresponding monopyridazin-5-yl ethers 2 and α, ω-[di(pyridazin-5-oxy)]alkanes 3. Treatment of 4 with 4 -substitutedphenol afforded 5-(4-substituted-phenoxy)-2-(4-substituted-phenoxymethyl) derivatives 5. Reaction of 2-alkyl-4,5-dichloro derivatives $\mathbf{7}$ with 1 gave the corresponding di(pyridazin-5-yl) ethers $\mathbf{8}$ in good yields. Compound $\mathbf{1 0}$ was reacted with catechol to give monopyridazin-3-yl ether $\mathbf{1 1}$ and/or di(pyridazin-3-yl) ether 12. Also we described the results for the reaction of 2-alkyl-4-chloro-5-(4-substituted-phenoxy)pyridazin$3(2 \mathrm{H})$-ones with nucleophiles.

J. Heterocyclic Chem., 42, 639 (2005).

As part of our research program for the development of novel pyridazin- $3(2 \mathrm{H})$-one derivatives as potential agrochemicals, we synthesized some new alkyl or aryl pyridazinyl ethers containing a halogen atom at $\mathrm{C}-4$ position of pyridazinone ring.

Although some methods for direct synthesis of 4,5dialkoxy, and 4(or 5)-monoalkoxypyridazin-3(2H)-one derivatives from the corresponding 4,5-dihalo derivatives have been reported, [1-4] they are nonselective for the alkoxylation of 4,5-dichloropyridazin-3(2H)-ones [4]. Therefore, we selected 5-hydroxy-4-halopyridazin-3(2H)ones 1 and 2-chloromethyl-4,5-dichloropyridazin-3(2H)one (4) as starting materials for the synthesis of 4-halo-5alkoxy derivatives. Compounds $\mathbf{1}$ [5] and $\mathbf{4}$ [6] were prepared by literature methods.
Reaction of $\mathbf{1}$ with 1,2-dibromoethane or 1,3-dibromopropane in the presence of potassium carbonate (mole
ratio; $\left.\left.\mathbf{1} / \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}\right) \mathrm{Br} / \mathrm{K}_{2} \mathrm{CO}_{3}=1: 1: 1\right)$ gave compounds $\mathbf{2}$ as the main product and $\mathbf{3}$. The results are summarized in Table 1. Whereas, treatment of $\mathbf{1 a}$ with 1,2-dibromoethane or 1,3-dibromopropane in the presence of potassium carbonate (mole ratio; $\left.\mathbf{1} / \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}\right) \mathrm{Br} / \mathrm{K}_{2} \mathrm{CO}_{3}=2: 1: 2$) also gave $\mathbf{3}$ as the main product. The structures of $\mathbf{2}$ and $\mathbf{3}$ were established by ir, nmr and elemental analyses. The proton magnetic resonance spectra of 2 showed proton signals of $\mathrm{CH}_{2} \mathrm{Br}\left(\delta 3.59-3.68 \mathrm{ppm}\right.$ range) and $\mathrm{CH}_{2} \mathrm{O}(\delta 4.35-4.54$ ppm range) involving other proton signals of the proposed structures, while the proton magnetic resonance spectra of 3 showed proton signals of two $\mathrm{CH}_{2} \mathrm{O}(\delta 4.11-4.75 \mathrm{ppm}$ range) involving other proton signals of the proposed structures.

According to the literature [6b], the reaction of 4 with nucleophiles such as $\mathrm{CH}_{3} \mathrm{O}^{-}$and $\mathrm{N}_{3}-$ selectively afford the corresponding 4-chloro-5-substituted-2-methoxy(or

Scheme 1

Method A: $1 / \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{Br} / \mathrm{K}_{2} \mathrm{CO}_{3}$ (1:1:1 mole ratio) in DMF
Method $\mathrm{B}: 1 / \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{Br} / \mathrm{K}_{2} \mathrm{CO}_{3}$ (2:1:2 mole ratio) in DMF
Method C: $\mathbf{1} / \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{Br} / \mathrm{K}_{2} \mathrm{CO}_{3}$ (1:2:2 mole ratio) in DMF

1	a	b	c	d	e	2,3	a	b	c	d	e	f
R	Et	$n-\mathrm{Pr}$	$n-\mathrm{Pr}$	Me	PhCH_{2}	R	Et	$n-\mathrm{Pr}$	$n-\operatorname{Pr}$	Me	Et	PhCH_{2}
X	Cl	Cl	Br	Cl	Cl	n	2	2	2	3	3	3
						X	Cl	Cl	Br	Cl	Cl	Cl

Table 1
Yields, Melting Points and Infrared Spectral Data for 2, 3, 5, 8, 11, 12, 14 and 17

Compound No	Isolated Yield(\%)	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$ (Lit. mp)	IR (potassium bromide, cm^{-1})
2 a	47 [a]	116-117	$3110,3070,3000,2890,1642,1605,1450,1420,1330,1299,1200,1100,955,850,745$
	0.3 [b]		
2 b	11 [a]	79-80	$3130,3100,3000,2900,1660,1620,1460,1430,1340,1300,1218,1120,1000,880,780$
2 c	26 [a]	118-120	3070, 2980, 2900, 1650, 1605, 1420, 1320, 1300, 1200, 1100, 840
2d	15 [a]	78-80	3120, 3060, 2960, 1645, 1610, 1398, 1330, 1305, 1215, 1102, 1000, 880
2 e	18 [a]	70-71	3075, 2999, 1650, 1420, 1358, 1320, 1282, 1200, 1105, 990, 890, 850
$2 f$	52 [a]	82-84	3100, 3060, 3000, 2930, 1660, 1618, 1420, 1400, 1330, 1285, 1220, 1100, 880, 738
3 a	10 [a]	145-146	3090, 3000, 2955, 2890, 1640, 1610, 1420, 1365, 1320, 1282, 1195, 1102, 905, 860, 760
	40 [b]		
3b	27 [a]	108-109	3140, 3080, 2950, 2880, 1650, 1600, 1410, 1370, 1315, 1280, 1190, 1100, 1030, 890, 860
3c	17 [a]	157-158	2998, 2900, 1660, 1610, 1480, 1420, 1350, 1320, 1280, 1200, 1100, 999, 858, 780, 760
3d	13 [a]	188-190	3130, 3100, 2999, 2930, 1655, 1610, 1403, 1340, 1300, 1218, 1110, 1030, 880
3 e	11 [a]	225-228	3070, 3000, 2970, 1640, 1618, 1505, 1400, 1380, 1200, 1090, 860
	67 [b]		
3 f	20 [a]	198-200	3150, 3100, 2999, 1660, 1620, 1420, 1310, 1198, 1100, 1038, 878, 680
5 a	98	76-78	$3090,3000,1689,1605,1507,1400,1290,1235,1180,1170,1085,1050,1030,760$
5b	81	155-156	3100, 3070, 2980, 2930, 1670, 1605, 1495, 1380, 1278, 1232, 1220, 1090, 1040, 840, 820
5c	81	133-135	3060, 3000, 2250, 1680, 1500, 1460, 1420, 1385, 1280, 1230, 1180, 1030, 850
5d	77	177-179	$\begin{aligned} & 3140,3100,2950,2900,1690,1630,1605,1540,1520,1368,1330,1290,1240,1122 \text {, } \\ & 1030,880 \end{aligned}$
5 e	88	73-75	$3100,3045,3000,2940,2870,1665,1525,1402,1300,1265,1222,1050,860,802,765$
8 a	72	148-149	3070, 3002, 2952, 1662, 1610, 1405, 1303, 1270, 1190, 1100, 860
8b	82	133-134	3070, 2960, 2870, 1655, 1600, 1380, 1310, 1265, 1190, 1095
8 c	83	177-179	3070, 3050, 2975, 1665, 1630, 1600, 1405, 1310, 1260, 1090, 880
11	87 [a]	148-150	3500-2900(br), 1620, 1600, 1520, 1445, 1300, 1240, 1160, 1110, 1100, 860, 760
12	10 [a]	166-168	3150, 3075, 1585, 1500, 1419, 1300, 1190, 1150, 860, 760
	88 [b]		
14a	86 [c]	154-155	$3125,3070,3020,2990,1645,1610,1400,1332,1300,1221,1105,962,880$
	86 [d]	(154-155)	
	94 [e]	[8]	
14b	89 [f]	99-100	3140, 3090, 3025, 2990, 1658, 1620, 1489, 1465, 1428, 1340, 1300, 1200, 1120, 970, 870
	24 [g]	(99-100)	
		[5a]	
14c	52 [h]	$\begin{aligned} & 109-110 \\ & (109-110) \end{aligned}$	$\begin{aligned} & 3100,3060,3000,2955,2900,1650,1605,1468,1440,1365,1275,1210,1210,1180 \text {, } \\ & 1100,959,820 \end{aligned}$
		[5a]	
17	74	84-85	$3100,3045,3000,2900,2140,1639,1415,1362,1320,1300,1225,1140,1015,980,855$

[a] Method A in Scheme 4; [b] Method B in Scheme 4; [c] From compound 13a; [d] From compound 13b; [e] From compound 13c. [f] From compound 13d; [g] From compound 17; [h] From compound 13e.
azido)methyl derivatives. Therefore, we attempted the synthesis of 4-chloro-5-phenoxy-2-phenoxymethylpyridazin$3(2 H)$-one 5 from 4. Reaction of $\mathbf{4}$ with p-substituted-phenol in the presence of potassium carbonate in acetonitrile
gave only compounds 5 in good yield instead of 4,5-di(4-substituted-phenyl)-2-chloromethyl derivatives 6 .

The structures of $\mathbf{5}$ were established by ir, nmr and elemental analyses. The proton magnetic resonance spectra of

Scheme 2

5 showed protons signals of $\mathrm{CH}_{2} \mathrm{O}$ at the $\mathrm{N}-2$ position in the $\delta 5.95-6.17 \mathrm{ppm}$ range as singlet, as well as other proton signals corresponding to the proposed structures.

Condensation of $\mathbf{1}$ with $\mathbf{7}$ in the presence of potassium carbonate in dimethylsulfoxide furnished the corresponding dipyridazinyl ethers $\mathbf{8}$ in good yields. The formation of 9 by the intermolecular reaction of $\mathbf{1}$, however, was not detected under the same condition. The structures of $\mathbf{8}$ were established by ir, nmr and elemental analyses. The proton magnetic resonance spectra of $\mathbf{8}$ revealed the proton signal of C-6 in the $\delta 7.60-7.66 \mathrm{ppm}$ range, as well as other protons signals corresponding to the proposed structures. The carbon-13 magnetic resonance spectra of $\mathbf{8}$ showed carbon signals of the carbonyl at C-3 (for 8a: $\delta 158.1$; for $\mathbf{8 b}: \delta 181.3$; for $\mathbf{8 c}: \delta 157.8 \mathrm{ppm}$), as well as other carbons signals corresponding to the proposed structures.

Reaction of 3,6-dichloropyridazine (10) [7] with catechol in the presence of potassium carbonate in acetonitrile (mole ratio; $\mathbf{1 0} /$ catechol $/ \mathrm{K}_{2} \mathrm{CO}_{3}=1: 1: 1$) also afforded $\mathbf{1 1}$ in 87% yield and $\mathbf{1 2}$ in 10% yield. Whereas, treatment of $\mathbf{1 0}$ with catechol in the presence of potassium carbonate in acetonitrile (mole ratio; $\mathbf{1 0} /$ catechol $/ \mathrm{K}_{2} \mathrm{CO}_{3}=2: 1: 2$) afforded only $\mathbf{1 2}$ in 88% yield. The structures of $\mathbf{1 1}$ and $\mathbf{1 2}$ were established by ir, nmr and elemental analyses. The infrared spectrum of $\mathbf{1 1}$ showed an absorption band of OH (3500-2900 cm^{-1}), whereas that of $\mathbf{1 2}$ did not show the absorption band of OH . The proton magnetic resonance spectrum of $\mathbf{1 1}$ showed the proton signal of OH at $\delta 9.55 \mathrm{ppm}$.

We also attempted the synthesis of 4-methoxy-5-(4-sub-stituted-phenyl) derivatives $\mathbf{1 5}$ from 13. Methoxylation of 13 [8] with potassium carbonate/methanol system gave only the corresponding 4-chloro-5-methoxy derivatives $\mathbf{1 4}$

Scheme 3

Table 2
${ }^{1} \mathrm{H}$ Nmr Spectral Data for 2, 3, 5, 8, 11, 12, 14 and 17

Compound No	Solvent [a]	${ }^{1} \mathrm{H} \operatorname{Nmr}(\delta, \mathrm{ppm})[\mathrm{b}]$
2a	C	$1.30(\mathrm{t}, 3 \mathrm{H}, J=7.2), 3.60(\mathrm{t}, 2 \mathrm{H}, J=6.2), 4.17(\mathrm{q}, 2 \mathrm{H}, J=7.2), 4.47(\mathrm{t}, 2 \mathrm{H}, J=6.2), 7.70(\mathrm{~s}, 1 \mathrm{H})$
2b	C	$0.95(\mathrm{t}, 3 \mathrm{H}, J=7.5), 1.82(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{t}, 2 \mathrm{H}, J=6.6), 4.15(\mathrm{t}, 2 \mathrm{H}, J=7.5), 4.55(\mathrm{t}, 2 \mathrm{H}, J=6.6), 7.77(\mathrm{~s}, 1 \mathrm{H})$
2 c	C	$0.95(\mathrm{t}, 3 \mathrm{H}, J=7.5), 1.82(\mathrm{q}, 2 \mathrm{H}, J=7.5), 3.68(\mathrm{t}, 2 \mathrm{H}, J=6.3), 4.16$ (t, 2H, ${ }^{\text {c }}=7.5$), 4.54(t, 2H, $\left.=6.3\right), 7.67(\mathrm{~s}, 1 \mathrm{H})$
2d	C	$2.29(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{t}, 2 \mathrm{H}, J=6.5), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{t}, 2 \mathrm{H}, J=6.5), 8.23(\mathrm{~s}, 1 \mathrm{H})$
2 e	C	$1.37(\mathrm{t}, 3 \mathrm{H}, J=7.2), 2.38(\mathrm{t}, 2 \mathrm{H}, J=6.0), 3.63(\mathrm{t}, 2 \mathrm{H}, J=6.0), 4.25(\mathrm{q}, 2 \mathrm{H}, J=7.2), 4.39(\mathrm{t}, 2 \mathrm{H}, J=6.0), 7.8(\mathrm{~s}, 1 \mathrm{H})$
2 f	C	$2.34(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{t}, 2 \mathrm{H}, J=7.2), 4.35(\mathrm{t}, 2 \mathrm{H}, J=7.2), 5.33(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 5 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H})$
3a	C	$1.37(\mathrm{t}, 6 \mathrm{H}, J=7.2), 4.24(\mathrm{q}, 4 \mathrm{H}, J=7.2), 4.66(\mathrm{~s}, 4 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H})$
3b	C	$0.94(\mathrm{t}, 6 \mathrm{H}, J=7.5,7.0), 1.82(\mathrm{~m}, 4 \mathrm{H}), 4.15(\mathrm{t}, 2 \mathrm{H}, J=7.5,7.0), 4.66(\mathrm{~s}, 4 \mathrm{H}), 7.89(\mathrm{~s}, 2 \mathrm{H})$
3 c	D	$0.86(\mathrm{t}, 6 \mathrm{H}, J=7.5), 1.71(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{t}, 2 \mathrm{H}, J=7.5), 4.75(\mathrm{~s}, 4 \mathrm{H}), 8.18(\mathrm{~s}, 2 \mathrm{H})$
3d	D	$2.24(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 4.49(\mathrm{t}, 4 \mathrm{H}, J=6.2), 8.21(\mathrm{~s}, 2 \mathrm{H})$
3 e	D	$1.25(\mathrm{t}, 6 \mathrm{H}, J=7.1), 2.25(\mathrm{t}, 2 \mathrm{H}, J=6.0), 4.11(\mathrm{~m}, 4 \mathrm{H}), 4.51(\mathrm{t}, 4 \mathrm{H}, J=7.1), 8.26(\mathrm{~s}, 2 \mathrm{H})$
3 f	D	$2.24(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{t}, 4 \mathrm{H}, J=6.0), 5.28(\mathrm{~s}, 4 \mathrm{H}), 7.30(\mathrm{~m}, 10 \mathrm{H}), 8.29(\mathrm{~s}, 2 \mathrm{H})$
5a	C	6.05(s, 2H), 7.44(m, 10H), 8.25(s, 1H)
5b	C	6.01(s, 2H), 7.22(m, 8H), 7.52(s, 1H)
5c	C	$6.11(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 4 \mathrm{H}), 7.61(\mathrm{t}, 2 \mathrm{H}, J=1.9), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{t}, 2 \mathrm{H}, J=1.9)$
5d	C+D	$6.17(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 4 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 2 \mathrm{H}, J=9.2), 8.33(\mathrm{~d}, 2 \mathrm{H}, J=9.2)$
5e	C	$3.75(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~m}, 8 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})$
8a	C	$1.41(\mathrm{t}, 6 \mathrm{H}, J=7.0), 4.29(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{~s}, 2 \mathrm{H})$
8b	D	$0.86(\mathrm{t}, 6 \mathrm{H}, J=7.2), 1.72(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{t}, 4 \mathrm{H}, J=7.2), 8.19(\mathrm{~s}, 2 \mathrm{H})$
8 c	C	$5.35(\mathrm{~s}, 4 \mathrm{H}), 7.38(\mathrm{~m}, 10 \mathrm{H}), 7.60(\mathrm{~s}, 2 \mathrm{H})$
11	D	$6.69(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=9.5), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=9.5), 9.55(\mathrm{bs}, 1 \mathrm{H})$
12	C	$7.01(\mathrm{~d}, 2 \mathrm{H}, J=9.0), 7.23(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=9.0)$
14a	C	$3.84(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H})$
14b	D	1.40 (t, $3 \mathrm{H}, J=7.2$), 4.10(s, 3 H$), 4.20(\mathrm{q}, 2 \mathrm{H}, J=7.2), 7.80(\mathrm{~s}, 1 \mathrm{H})$
14c	D	$1.28(\mathrm{~d}, 6 \mathrm{H}, J=6.0), 4.08(\mathrm{~s}, 3 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H})$
17	C	$1.37(\mathrm{t}, 3 \mathrm{H}, J=7.2), 4.23(\mathrm{q}, 2 \mathrm{H}, J=7.2), 7.62(\mathrm{~s}, 1 \mathrm{H})$

[a] Solvent: $\mathrm{C}=\mathrm{CDCl}_{3}, \mathrm{D}=\mathrm{DMSO}-\mathrm{d}_{6} ;[\mathrm{b}]$ Abbreviations used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $J=\mathrm{Hz}$ unit.

Scheme 4

Method A: 10/Catechol/ $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1:1:1 mole ratio) in $\mathrm{CH}_{3} \mathrm{CN}$
Method B: 10/Catechol/ $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2:1:2 mole ratio) in $\mathrm{CH}_{3} \mathrm{CN}$
instead of compound $\mathbf{1 5}$. The alkyl groups at the $\mathrm{N}-2$ position of pyridazin- $3(2 \mathrm{H})$-one has an effect on the methoxylation of $\mathbf{1 3}$ based on our results. Compound $\mathbf{1 6}$ [8] was also treated with $\mathrm{NaN}_{3} / \mathrm{NH}_{4} \mathrm{Cl}$ in dimethylformamide to give 5-azido-4-chloro derivative $\mathbf{1 7}$ instead of the 4-azido-5-(4cyanophenyl) derivative. Treatment of $\mathbf{1 7}$ with potassium carbonate/methanol also gave the corresponding 4-chloro-5-methoxy derivative $\mathbf{1 4 b}$ instead of the 4-methoxy-5azido derivative. The structures of $\mathbf{1 4}$ and $\mathbf{1 7}$ were established by ir, nmr and elemental analyses. And compounds 14 and 17 were also identical to authentic compounds.

Further work is under way in our laboratory including the biological characterization, other chemical transformation of new derivatives and the regioselective functionalization using 5-azido or 5-phenoxy derivatives.

EXPERIMENTAL

TLC was performed on silica gel (60 F ${ }^{254}$ Merck). The spots were located by UV light. Open-bed chromatography was carried out on silica gel ($70 \sim 230$ mesh, Merck) using gravity flow. The column was packed as slurries with the

Scheme 5

16

Finally, 2-Alkyl-4-halo-5-hydroxypyridazin-3(2H)ones 1 proved to be useful precursors for the synthesis 4-halo-5-alkoxy or aryloxypyridazin-3(2H)-ones. The conversion of 5-phenoxy or azido derivatives to 5-azido or methoxy derivatives may also be useful for the regioselective functionalization.
elution solvent. Melting points were determined with a capillary apparatus and uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 300 MHz spectrometer with chemical shift values reported in δ units (ppm) relative to an internal standard (TMS). IR spectra were obtained on an IR spectrophotometer. Elemental analyses were performed with a Perkin Elmer 240C.

Table 3
${ }^{13} \mathrm{C}$ Nmr Spectral Data for 2, 3, 5, 8, 11, 12, 14 and 17

Compound No	Solvent [a]	${ }^{1} \mathrm{H} \mathrm{Nmr}(\delta, \mathrm{ppm})$
2a	C	13.9, 28.3, 48.4, 70.5, 118.5, 127.7, 154.2, 158.7
2b	C	$11.4,22.0,28.3,54.6,70.5,118.5,127.5,154.1,158.9$
2c	C	$11.1,21.7,27.8,54.4,70.1,109.6,126.6,155.7,158.8$
2d	C	$30.3,31.7,68.4,114.6,127.4,127.7,154.4,157.6$
2 e	C	$13.5,29.0,32.0,47.9,67.9,117.4,126.8,154.2,158.4$
2 f	C	$28.9,32.0,55.9,68.0,117.6,127.2,128.1,128.6,129.0,135.7,154.2,158.5$
3a	C	13.5, 47.9, 69.0, 118.1, 127.3, 154.0, 158.2
3b	C	$11.4,22.0,54.6,69.3,118.4,127.5,154.3,158.8$
3c	D	$10.8,21.2,53.2,69.0,107.0,127.9,156.2,157.8$
3d	D	$29.5,41.2,66.5,117.6,126.9,154.7,159.1$
3 e	D	13.3, 28.5, 46.8, 66.9, 114.7, 127.9, 154.3, 157.1
3 f	D	$29.0,55.2,67.5,99.4,115.2,128.0,128.3,128.9,136.8,154.9,157.9$
5a	C	$78.2,116.7,120.4,120.7,123.2,126.9,130.3,131.0,131.2,154.0,154.3,157.2,159.3$
5b	C	$77.9,117.6,120.8,120.9,127.7,129.6,130.4,130.7,131.7,152.0,153.2,155.2,158.6$
5c	C	$77.3,106.1,109.7,116.5,117.7,118.7,119.3,123.4,131.6,134.2,134.8,152.1,156.9,158.4,159.8$
5d	C+D	$77.9,116.1,116.3,119.1,123.8,126.2,126.7,132.2,142.9,145.2,152.3,158.6,161.8$
5e	C	$55.6,55.7,78.8,114.7,115.6,117.7,118.9,121.2,129.8,146.7,150.6,154.2,155.2,157.8,158.7$
8a	C	13.7, 48.8, 123.1, 129.8, 150.7, 158.1
8b	D	$34.4,44.6,77.3,144.8,154.0,174.3,181.3$
8 c	C	$56.5,123.0,128.5,129.0,129.3,129.6,135.0,150.3,157.8$
11	D	$117.5,119.9,120.8,123.1,127.0,132.4,140.8,149.2,151.7,165.2$
12	C	$119.9,123.6,127.5,132.0,145.2,152.9,164.9$
14a	C	$41.2,58.0,117.0,126.3,155.4,159.2$
14b	D	$13.5,47.8,57.6,116.7,126.1,154.9,158.4$
14c	D	$21.0,50.7,57.5,116.4,125.9,154.4,158.4$
17	C	13.4, 48.1, 122.7, 129.3, 139.1, 156.9

[a] Solvent: $\mathrm{C}=\mathrm{CDCl}_{3}, \mathrm{D}=\mathrm{DMSO}-\mathrm{d}_{6}$

Table 4
Elemental Analysis of 2, 3, 5, 8, 11, 12, 14 and 17.
Table 4 (continued)

Compound No	Molecular Formula	Calcd./Found(\%)			Compound No	Molecular Formula	Calcd./Found(\%)		
		C	H	N			C	H	N
2 a	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrCl}$	34.13	3.58	9.95	5b	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}_{3}$	51.35	2.79	7.04
		34.08	3.51	9.89			51.46	2.82	7.20
2b	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrCl}$	36.57	4.09	9.48	5 c	$\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}$	60.25	2.93	14.79
		36.44	4.01	9.37			60.29	2.99	14.81
2 c	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}$	31.79	3.56	8.24	5d	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Cl}$	48.76	2.65	13.38
		32.00	3.68	8.22			48.97	2.69	13.43
2d	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrCl}$	34.13	3.58	9.95	5	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Cl}$	58.69	4.41	7.21
		34.01	3.66	10.01			58.72	4.48	7.28
2 e	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrCl}$	36.57	4.09	9.48	8 a	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	43.52	3.65	16.92
		36.50	4.19	9.29			43.66	3.69	16.97
$2 f$	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrCl}$	47.02	3.95	7.83	8b	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	46.81	4.49	15.60
		47.12	4.01	7.79			46.90	4.53	15.63
3 a	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$	44.82	4.30	14.93	8 c	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	58.04	3.54	12.31
		44.88	4.33	14.79			58.11	3.61	12.44
3b	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$	47.65	5.00	13.89	11	$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$	53.95	3.17	12.58
		47.70	5.01	13.90			53.98	3.21	12.64
3 c	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Br}_{2}$	39.05	4.10	11.38	12	$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$	50.17	2.41	16.72
		39.09	4.13	11.39			50.21	2.45	16.80
3d	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$	43.23	3.91	15.51	14a	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$	41.28	4.04	16.05
		43.31	4.01	15.55			41.31	4.12	16.12
3 e	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$	46.29	4.66	14.39	14b	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$	44.58	4.81	14.85
		46.12	4.43	14.16			44.61	4.90	14.92
3 f	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$	58.49	4.32	10.91	14c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$	41.76	2.92	16.23
		58.51	4.39	10.98			41.82	2.99	16.31
5 a	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$	62.11	3.99	8.52	17	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{5} \mathrm{OCl}$	36.10	3.03	35.09
		62.17	4.02	8.60			36.33	3.11	35.13

4-Chloro-2-ethyl-5-(2-bromoethoxy)pyridazin-3(2H)-one (2a) and 1,2-Bis[4-chloro-2-ethyl-3-oxopyridazin-5-yl]oxy]ethane (3a).

Method A.
A mixture of 1a ($2.1 \mathrm{~g}, 12$ mmoles), 1,2-dibromoethane (2.16 $\mathrm{g}, 12$ mmoles $)$, potassium carbonate ($1.66 \mathrm{~g}, 12 \mathrm{mmoles}$) and dimethylformamide (50 mL) was stirred at room temperature for 24 hours. The mixture was poured into water (200 mL) with stirring. After extracting with chloroform (150 mL) the products, chloroform solution was washed with water ($200 \mathrm{~mL} \times 5$) and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column ($2.4 \times 5 \mathrm{~cm}$). The column was eluted with chloroform. Fractions containing 2a $\left(R_{f}=\right.$ $0.3 \mathrm{CHCl}_{3} /$ diethyl ether $=9.5: 0.5, \mathrm{v} / \mathrm{v}$) were combined and evaporated under reduced pressure to give 2a in 47% yield (3 g , recrystallization solvent: diethyl ether $/ n$-hexane $=1: 3, \mathrm{v} / \mathrm{v})$. Fractions containing 3a ($\mathrm{R}_{\mathrm{f}}=0.05 \mathrm{CHCl}_{3} /$ diethyl ether $=9.5: 0.5$, v / v) were combined and evaporated under reduced pressure to give 3a in 10% yield (0.9 g , recrystallization solvent: diethyl ether).

Method B.

A mixture of 1a ($1 \mathrm{~g}, 5.75$ mmoles), 1,2-dibromoethane (0.25 $\mathrm{g}, 2.87$ mmoles), potassium carbonate ($0.79 \mathrm{~g}, 5.75 \mathrm{mmoles}$) and dimethylformamide (15 mL) was stirred at room temperature for 45 hours. The mixture was poured into water (200 mL) with stirring. After extracting with chloroform (50 mL) the products, chloroform solution was washed with water $(100 \mathrm{~mL}$ x 5$)$ and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column ($2.4 \times 5 \mathrm{~cm}$). The column was eluted with chloroform. Fractions containing 2a ($\mathrm{R}_{\mathrm{f}}=$ $0.3 \mathrm{CHCl}_{3} /$ diethyl ether $\left.=9.5: 0.5, \mathrm{v} / \mathrm{v}\right)$ were combined and evaporated under reduced pressure to give 2a in 0.3% yield $(0.01 \mathrm{~g}$, recrystallization solvent: diethyl ether $/ n$-hexane $=1: 3, \mathrm{v} / \mathrm{v}$). Fractions containing 3a ($\mathrm{R}_{\mathrm{f}}=0.05 \mathrm{CHCl}_{3} /$ diethyl ether $=$ 9.5:0.5, v/v) were combined and evaporated under reduced pressure to give 3a in 40% yield (0.9 g , recrystallization solvent: diethyl ether).
4-Chloro-2-propyl-5-(2-bromoethoxy)pyridazin-3(2H)-one (2b) and 1,2-Bis[4-chloro-2-propyl-3-oxopyridazin-5-yl]oxy]ethane (3b).

Method C.

A mixture of $\mathbf{1 b}$ ($1.13 \mathrm{~g}, 6$ mmoles), 1,2-dibromoethane (2.16 $\mathrm{g}, 12 \mathrm{mmoles}$), potassium carbonate ($1.66 \mathrm{~g}, 12 \mathrm{mmoles}$) and dimethylformamide (20 mL) was stirred for 6 days at $50-60^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was poured into water (100 mL) with stirring. After extracting with chloroform (100 mL) the products, chloroform solution was washed with water (200 mL x 5) and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column ($2.4 \times 12 \mathrm{~cm}$). The column was eluted with chloroform. Fractions containing $\mathbf{2 b}\left(\mathrm{R}_{\mathrm{f}}=0.53 \mathrm{CHCl}_{3} /\right.$ diethyl ether $=9.5: 0.5$, v / v) were combined and evaporated under reduced pressure to give $\mathbf{2 b}$ in 11% yield (0.5 g , recrystallization solvent: diethyl ether $/ n$-hexane $=1: 2, \mathrm{v} / \mathrm{v})$. Fractions containing $\mathbf{3 b}\left(\mathrm{R}_{\mathrm{f}}=0.17\right.$ $\mathrm{CHCl}_{3} /$ diethyl ether $=9.5: 0.5, \mathrm{v} / \mathrm{v}$) were combined and evapo-
rated under reduced pressure to give 3b in 27% yield (1.7 g , recrystallization solvent: diethyl ether $/ n$-hexane $=1: 2, \mathrm{v} / \mathrm{v}$).

4-Bromo-2-propyl-5-(2-bromoethoxy)pyridazin-3(2H)-one (2c) and 1,2-Bis[4-bromo-2-propyl-3-oxopyridazin-5-yl]oxy]ethane (3c).

Method A.

A mixture of $\mathbf{1 c}$ ($2.88 \mathrm{~g}, 12$ mmoles), 1,2-dibromoethane (2.16 $\mathrm{g}, 12 \mathrm{mmoles})$, potassium carbonate ($1.66 \mathrm{~g}, 12 \mathrm{mmoles}$) and dimethylformamide (20 mL) was stirred for 54 hours at 35-40 ${ }^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was poured into water (200 mL) with stirring. After extracting with chloroform (50 mL) the products, chloroform solution was washed with water ($200 \mathrm{~mL} \times 5$) and dried over anhydrous magnesium sulfate. After co-evaporating silica gel (4 g) under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column ($2.4 \times 10 \mathrm{~cm}$). The column was eluted with chloroform. Fractions containing $\mathbf{2 c}\left(\mathrm{R}_{\mathrm{f}}=0.54 \mathrm{CHCl}_{3} /\right.$ diethyl ether $=9.5: 0.5$, v / v) were combined and evaporated under reduced pressure to give $\mathbf{2 c}$ in 26% yield (1.1 g , recrystallization solvent: n-hexane). Fractions containing $3 \mathbf{c}\left(\mathrm{R}_{\mathrm{f}}=0.18 \mathrm{CHCl}_{3} /\right.$ diethyl ether $=9.5: 0.5$, v / v) were combined and evaporated under reduced pressure to give $\mathbf{3 c}$ in 17% yield (1.1 g).

4-Chloro-2-methyl-5-(3-bromopropyloxy)pyridazin-3(2H)-one (2d) and 1,3-Bis[4-chloro-2-methyl-3-oxopyridazin-5-yl]oxy]propane ($\mathbf{3 d}$).

Method A.

A mixture of $\mathbf{1 d}$ ($3 \mathrm{~g}, 19 \mathrm{mmoles}$), 1,3-dibromopropane (3.8 g , 19 mmoles), potassium carbonate ($2.63 \mathrm{~g}, 19$ mmoles) and dimethylformamide (20 mL) was stirred for 77 hours at $40-50$ ${ }^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was poured into water (150 mL) with stirring. After extracting with chloroform (50 mL x 3) the products, chloroform solution was washed with water (200 mL x 5) and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column ($2.4 \times 10 \mathrm{~cm}$). The column was eluted with chloroform. Fractions containing $2 \mathbf{d}\left(\mathrm{R}_{\mathrm{f}}=0.53 \mathrm{CHCl}_{3} /\right.$ diethyl ether $=9.5: 0.5$, v / v) were combined and evaporated under reduced pressure to give 2 d in 15% yield (1.5 g , recrystallization solvent: chloroform $/ n$-hexane $=1: 5, \mathrm{v} / \mathrm{v})$. Fractions containing 3d $\left(\mathrm{R}_{\mathrm{f}}=0.14\right.$ $\mathrm{CHCl}_{3} /$ diethyl ether $=9.5: 0.5, \mathrm{v} / \mathrm{v}$) were combined and evaporated under reduced pressure to give 3d in 13% yield (1.8 g).

4-Chloro-2-ethyl-5-(3-bromopropyloxy)pyridazin-3(2H)-one (2e) and 1,3-Bis[4-chloro-2-ethyl-3-oxopyridazin-5-yl]oxy]propane (3e).

Method A.

A mixture of 1a ($5 \mathrm{~g}, 29$ mmoles), 1,3-dibromopropane (7 g , 29 mmoles), potassium carbonate ($4.01 \mathrm{~g}, 29$ mmoles) and acetonitrile (120 mL) was refluxed for 24 hours. After cooling to room temperature, the mixture was filtered. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column $(2.4 \times 20 \mathrm{~cm})$. The column was eluted with chloroform. Fractions containing 2a ($\mathrm{R}_{\mathrm{f}}=$ $0.54 \mathrm{CHCl}_{3} /$ diethyl ether $=9.5: 0.5 \mathrm{v} / \mathrm{v}$) were combined and evaporated under reduced pressure to give 2 e in 18% yield (1.5 g , recrystallization solvent: n-hexane). Fractions containing $3 \mathrm{e}\left(\mathrm{R}_{\mathrm{f}}\right.$ $=0.16 \mathrm{CHCl}_{3} /$ diethyl ether $\left.=9.5: 0.5, \mathrm{v} / \mathrm{v}\right)$ were combined and
evaporated under reduced pressure to give $3 \mathbf{e}$ in 11% yield $(2.5 \mathrm{~g}$, recrystallization solvent: diethyl ether).

Method B.
A mixture of $\mathbf{1 a}$ ($1 \mathrm{~g}, 5.74$ mmoles), 1,3-dibromopropane (0.58 $\mathrm{g}, 2.87 \mathrm{mmoles})$, potassium carbonate $(0.79 \mathrm{~g}, 5.75 \mathrm{mmoles})$ and dimethylformamide (15 mL) was refluxed for 79 hours. After cooling to room temperature, the mixture was filtered. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column (2 x 20 cm). The column was eluted with chloroform. Fractions containing $3 \mathrm{e}\left(\mathrm{R}_{\mathrm{f}}=0.16 \mathrm{CHCl}_{3} /\right.$ diethyl ether $\left.=9.5: 0.5, \mathrm{v} / \mathrm{v}\right)$ were combined and evaporated under reduced pressure to give $\mathbf{3} \mathbf{e}$ in 67% yield (1.4 g , recrystallization solvent: diethyl ether).

2-Benzyl-4-Chloro-5-(3-bromopropyloxy)pyridazin-3(2H)-one (2f) and 1,3-Bis[2-benzyl-4-chloro-3-oxopyridazin-5yl]oxy]propane (3f).

Method A.
A mixture of $\mathbf{1 e}$ ($5 \mathrm{~g}, 20 \mathrm{mmoles}$), 1,3-dibromopropane (4.24 $\mathrm{g}, 21 \mathrm{mmoles})$, potassium carbonate $(2.9 \mathrm{~g}, 21 \mathrm{mmoles})$ and acetonitrile (120 mL) was refluxed for 22 hours. After cooling to room temperature, the mixture was filtered. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column ($3 \times 20 \mathrm{~cm}$). The column was eluted with chloroform. Fractions containing $\mathbf{2 f}\left(\mathrm{R}_{\mathrm{f}}=\right.$ $0.58 \mathrm{CHCl}_{3} /$ diethyl ether $\left.=9.5: 0.5, \mathrm{v} / \mathrm{v}\right)$ were combined and evaporated under reduced pressure to give $\mathbf{2 f}$ in 52% yield (1.8 g , recrystallization solvent: diethyl ether $/ n$-hexane $=1: 2, \mathrm{v} / \mathrm{v})$. Fractions containing $\mathbf{3 f}\left(\mathrm{R}_{\mathrm{f}}=0.21 \mathrm{CHCl}_{3} /\right.$ diethyl ether $=9.5: 0.5$, v / v) were combined and evaporated under reduced pressure to give $\mathbf{3 f}$ in 20% yield (1 g).

4-Chloro-5-phenoxy-2-phenoxymethylpyridazin-3(2H)-ones 5.

A mixture of $4(2.99 \mathrm{~g}, 14 \mathrm{mmoles})$, phenol (2.64 g, 28 mmoles), potassium carbonate ($3.87 \mathrm{~g}, 28$ mmoles) and acetonitrile (15 mL) was refluxed until $\mathbf{4}$ was disappeared ($\mathbf{5 a}$ for 3 hours, $\mathbf{5 b}$ for 1 hour, $\mathbf{5 c}$ for 2 hours, $\mathbf{5 d}$ for 19 hours, $\mathbf{5 e}$ for 8 hours). After cooling to room temperature, the mixture was filtered. The work-up processes were the following: For $\mathbf{5 a}$ and $\mathbf{5 b}$: After evaporating the solvent under reduced pressure, the resulting residue was triturated in water $(50 \mathrm{~mL})$ with stirring. The resulting precipitates was filtered, washed with n-hexane and dried in air to give $\mathbf{5}(\mathbf{5 a}=98 \%, \mathbf{5 b}=81 \%)$. For $\mathbf{5 c}$ and $\mathbf{5 d}$: After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column (2 x 12 cm). The column was eluted with chloroform. Fractions containing $5\left(5 \mathbf{c} \mathrm{R}_{\mathrm{f}}=0.33, \mathbf{5 d} \mathrm{R}_{\mathrm{f}}=0.36 ; \mathrm{CHCl}_{3} /\right.$ diethyl ether $=$ $9.5: 0.5, \mathrm{v} / \mathrm{v}$) were combined and evaporated under reduced pressure to give $\mathbf{5} \mathbf{(5 c}$ in 81% yield, $\mathbf{5 d}$ in 77% yield; recrystallization solvent: CHCl_{3} / n-hexane $\left.=1: 1, \mathrm{v} / \mathrm{v}\right)$. For 5e: After evaporating the solvent under reduced pressure, the resulting residue was recrystallized from water/methanol (5:2, v/v) to give $\mathbf{5 e}$ in 88% yield.

Bis(4-chloro-2-alkyl-3-oxopyridazin-5-yl)ethers 8.

A mixture of 7 (27 mmoles), $\mathbf{1}$ (27 mmoles), potassium carbonate ($4.4 \mathrm{~g}, 30 \mathrm{mmoles}$) and solvent (for $\mathbf{8 a}$ DMSO, 20 mL ; for $\mathbf{8 b}$ acetonitrile, 20 mL ; for $\mathbf{8 c} \mathrm{DMSO} /$ acetonitrile $=15: 50 \mathrm{~mL}$) was stirred at suitable temperature until 7 and 1 were no longer
present by tlc monitoring (8a for 58 hours at $60-70{ }^{\circ} \mathrm{C}, \mathbf{8 b}$ for 8 hours at room temperature, $\mathbf{8 c}$ for 8 days at $80-90^{\circ} \mathrm{C}$). After cooling to room temperature, chloroform $(100 \mathrm{~mL})$ and water (200 mL) were added to the mixture with stirring. After separating, the organic layer was washed with excess water and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column ($2.4 \times 8 \mathrm{~cm}$). The column was eluted with chloroform/diethyl ether (9.5:0.5, v/v, for 8a) or chloroform (for $\mathbf{8 b}$ and $\mathbf{8 c}$). Fractions containing $\mathbf{8}\left(\mathbf{8 a} \mathrm{R}_{\mathrm{f}}=0.18, \mathbf{8 b}\right.$ $\mathrm{R}_{\mathrm{f}}=0.20,8 \mathrm{c} \mathrm{R}_{\mathrm{f}}=0.21 ; \mathrm{CHCl}_{3} /$ diethyl ether $\left.=9.5: 0.5, \mathrm{v} / \mathrm{v}\right)$ were combined and evaporated under reduced pressure to give $\mathbf{8}$ ($\mathbf{8 a}$ in 72% yield, $\mathbf{8 b}$ in 82% yield, $\mathbf{8 c}$ in 83% yield; recrystallization solvent: diethyl ether $/ n$-hexane $=1: 2, \mathrm{v} / \mathrm{v}$).

6-Chloropyridazin-3-yl-2-hydroxyphenyl ether (11) and 1,2-Bis[6-chloropyridazin-3-yl]oxy]benzene (12).

A solution of 3,6-dichloropyridazine (10, $1 \mathrm{~g}, 7.61 \mathrm{mmoles})$, catechol ($1.43 \mathrm{~g}, 13 \mathrm{mmoles}$), potassium carbonate $(1.9 \mathrm{~g}, 13$ mmoles) and acetonitrile (30 mL) was refluxed for 25 hours. After cooling to room temperature, the mixture was filtered and washed with methanol $(10 \mathrm{~mL})$. The combined filtrate was coevaporated with silica gel (4 g) under reduced pressure. The resulting residue was applied to the top of an open-bed silica gel column ($2.4 \times 12 \mathrm{~cm}$). The column was eluted with chloroform. Fractions containing $12\left(\mathrm{R}_{\mathrm{f}}=0.32, \mathrm{CHCl}_{3} /\right.$ diethyl ether $=$ 9.5:0.5, v/v) were combined. After evaporating under reduced pressure, the residue was washed with diethyl ether and dried in air to give $\mathbf{1 2}$ in $10 \%(0.4 \mathrm{~g})$ yield. Fractions containing $11\left(\mathrm{R}_{\mathrm{f}}=\right.$ $0.18, \mathrm{CHCl}_{3} /$ diethyl ether $\left.=9.5: 0.5, \mathrm{v} / \mathrm{v}\right)$ were combined. After evaporating under reduced pressure, the residue was recrystallized from diethyl ether $/ n$-hexane $(1: 1.5, \mathrm{v} / \mathrm{v})$ and dried in air to give 11 in $87 \%(1.7 \mathrm{~g})$ yield.

Synthesis of 2-Alkyl-4-chloro-5-methoxypyridazin-3(2H)-ones 14 from 13 and 17.

A mixture of 2-alkyl-4-chloro-5-(4-substituted-phenoxy)pyri-dazin- $3(2 H)$-ones $\mathbf{1 3}$ or $\mathbf{1 7}$ (2.8 mmoles), potassium carbonate ($0.58 \mathrm{~g}, 4.19 \mathrm{mmoles}$) and methanol (20 mL) was refluxed until the 5-phenoxy derivative was no longer present by tlc monitoring (13a for 2.5 hours, 13b for 2 hours, 13c for 20 hours, 13d, 13e and 17 for 1 hour). The work-up processes were the followings: For 13a, 13b, 13d and 17: After evaporating the solvent under reduced pressure, water $(20 \mathrm{~mL})$ was added to the residue with stirring. The precipitate was collected by filtration and dried in air to give $\mathbf{1 4 a}$ or $\mathbf{1 4 b}$. For 13c and 13e: After cooling to room temperature, the mixture was filtered. The filtrate was co-evaporated with silica gel $(2 \mathrm{~g})$ under reduced pressure. The residue was applied to the top of an open-bed silica gel column (2.4×10 $\mathrm{cm})$. The column was eluted with methylene chloride. Fractions containing $14 \mathbf{a}\left(\mathrm{R}_{\mathrm{f}}=0.56, \mathrm{CHCl}_{3} /\right.$ diethyl ether $\left.=9.5: 0.5, \mathrm{v} / \mathrm{v}\right)$ or $\mathbf{1 4 c}\left(\mathrm{R}_{\mathrm{f}}=0.60, \mathrm{CHCl}_{3} /\right.$ diethyl ether $\left.=9.5: 0.5, \mathrm{v} / \mathrm{v}\right)$ were combined and evaporated under reduced pressure to give 14a (recrystallization solvent: diethyl ether) or $\mathbf{1 4 c}$ (recrystallization solvent: diethyl ether $/ n$-hexane $=1: 2, \mathrm{v} / \mathrm{v}$)

5-Azido-4-chloro-2-ethylpyridazin-3(2H)-one (17).

A mixture of $\mathbf{1 6}(1.5 \mathrm{~g}, 5.45 \mathrm{mmoles})$, sodium azide $(0.7 \mathrm{~g}, 10$ mmoles), ammonium chloride ($0.54 \mathrm{~g}, 10 \mathrm{mmoles}$) and dimethylformamide (20 mL) was stirred for 122 hours at room temperature. Chloroform $(150 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ were added to the
mixture. The resulting mixture was stirred for an additional 5 hours. The organic layer was separated, washed with excess water and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column (2×15 cm). The column was eluted with chloroform. Fractions containing $17\left(\mathrm{R}_{\mathrm{f}}=0.62 \mathrm{CHCl}_{3} /\right.$ diethyl ether $\left.=9.5: 0.5, \mathrm{v} / \mathrm{v}\right)$ were combined and evaporated under reduced pressure to give $\mathbf{1 7}$ in $\mathbf{7 4 \%}$ yield $(0.8 \mathrm{~g}$, recrystallization solvent: n-hexane).

REFERENCES AND NOTES

[1] K. Dury, Angew. Chem., Int. Ed., 4, 292 (1965).
[2] R. D. Bryant, F.-A Kuung, M. S. South, J. Heterocyclic Chem., 32, 1473 (1995).
[3] S. Y. Choi, S. C. Shin, Y. J. Yoon, J. Heterocyclic Chem., 28, 385(1991).
[4] S. G. Lee, J. J. Kim, H. K. Kim, D. H. Kweon, Y. J. Kang, S. D. Cho, S. K. Kim
and Y. J. Yoon, Curr. Org. Chem., 8, 1463 (2004).
[5a] S. D. Cho, W. Y. Choi and Y. J. Yoon, J. Heterocyclic Chem., 33, 1579 (1996); [b] S. D. Cho, D. H. Kweon, Y. J. Kang, H.-A. Chung and Y. J. Yoon, J. Heterocyclic Chem., 35, 601 (1998).
[6a] D. H. Kweon, S. D. Cho, S. K. Kim, J. W. Chung and Y. J. Yoon, J. Heterocyclic Chem., 33, 1915 (1996); [b] H. -A. Chung, Y. J. Kang and Y. J. Yoon, J. Heterocyclic Chem. 35, 1257 (1998).
[7] M. S. Shin, Y. J. Kang, H.-A. Chung, J. W. Park, D. H. Kweon, W. S. Lee and Y. J. Yoon, J. Heterocyclic Chem., 36, 1135 (1999).
[8] D. H. Kweon, Y. J. Kang, H.-A. Chung and Y. J. Yoon, J. Heterocyclic Chem., 35, 819 (1998).

